Lesson’s Learned in Building a Telerobotie Systemn

1{01)(11 D.Stecle
Jet Propulsion Laboratory
Californialnstitute of Technology
Pasad ena, California

1 The System

The Supervisory Telerobotics Laboratory (STELER) at the Jet Propulsion Laboratory (J1°1) developed a unique
local and remote telerobotic systen that has been deseribed in earlier articles! 23, To sunmnarize the systern, it
is composed of two major subsysteins, the Local Site (LS), that provides the ground site including the operator
interfaces and the Remote Site (RS) that provides the real time control of the robot and se nsors. Tt ie software for
the RS is known by the acronym MOTES, which stands for Modular Telero hot Task Fxceution Systent. Figure 1
pictorial illustrates the two subsysteins and their interfaces, In this pictograph the cinphasis is on the LS Jocated on
the earth, with the RS used in orbit either in a completely antonomously mode or in conjunction with astronauts.
The STELER architecture supports any robotic cont ol application where 01 1% a minimal handwidth is available
between the local and remote sites.

Figure 2, STELER Context Diagram, shows the relationships between t hese two corn ponents and the Robol.
Figure 3, MOTES Iunctional Diagram,* details the functions within MO'TES.

The 1S was written in C and runs o a combination of SGIworkstation and a VME chassis to handle the
video capturmg portion of thetas k'The 1{sS was writtenstrictly in Ada and runs in a VM chassis onmultiple
Hhae rikon 68020s. The RS is the focus of this article.

1.1 System Goal

As onccannnage, a remobe space environment poses so e interesting chialleniges. The goal of this systern was to
demonstrate the feasibility of a local-remote avelittecture for space applications. Mauy constraints of this environment
have been detailed in papers before. The major constraints of the enviromuent inelude:

« A limited commputation environment.

o Thne delay inthe communications between the Local Silt and the on orbit Remote Site of asinuch as 8 seconds
roundtrip delay.’

o« Software, including any on-orbit programs for { he robot must be flight qualified.
« Any uploaded software nust first be {light qualified before the upload to the RS can oce ur.
¢« ‘I'he on orbit systemn must respond guickly, predictably, and be recoverable to any anomalous sit uation.

.G, Backes, MK, Long, R.D). Steele. Designing Minimal Space for Maxinnn Space Parformance. Proceeding ATAA Acrospace
Design Conference, February 3-6G, 1992

?1nG. Backes, MK, Long, R.I). Stecle. System Architecture for Asynchronous Multi-1'rocessor Robot Control System, Proceeding,
ATAA Acrospace Design Conference, February 1993

P.G. Backes. Ground-Remote Control For Space Station Telerobotics with Time Delay Proceeding AAS Guidance and Contyol
Conference, Febroary 812, 1992

4 A resull of rescarch conducted by Paul G Backes

“R.Aster, .M. de Pitahaya, and G. Deshpande. Analysis of End-to-Eud iformation System Latency for Space Station Freedom.
Techmical Report 1-8650, Jet Propulsion Laboratory, May 1991,

27 ADA SOFTWARE STAFFING PROY] LY

The large latency in the connnunicat ion drove mucly of the design of the STV LER system. Withsuch a large
latencey in the connmunication, direct control of' the robot was not feasible. But the requirements for the real-time
control of the robot remain an issue. To mect the real-time control requirements and to deal with the large latency
a control schier e was developed that relied on trans ferring, several conmand blocks that could provide substantial
task Jevel control. This scheine is 1o the paradigin for the cont rol of spaceeraflt.® Iust cad of transmitting prograis
{o the remote site, a set of diita parameters are transmitted that control the execution of the remote site software.
This allows the RS software to handle a variety of control modes with no chiange inthe RS software required.

Theprototypelocalandremote site currently comniunicates via UNIX sockets. The 1,S sends Task Connmand
Blocks (TC Bs) to the RS. The RS sends updates to the LS via Reports. The RS receives 1'CBs asynchronously from
the LS. Reports arc transmitted by itheremote silt at both periodic and aperiodic rates. These TCBs provide the
basis for the control of the RS, Parameters withinthe 17 (ilk specily completely the total exccution of MOTES. Inthe
currentiimplementation the T'C Bs contain approximately 3000 bytes Of data slid the Reports contain approximately
1500 bytes of data.

This scheme also met the reguirement to provide extensive internal monitoring. Besides control paramcters,
reflex actions were also specified through these data scts, Bxperiinents in the STELER laboratory were performed
and tasks such as a docking experiment? were completed antonomously using this data block command structure.
Superimposed ontop of theconnmandtasks, the reflex actions handled anomalous situations, such as excessive forces
detected during the docking experiment. Because of the large forces required to comiplete the docking experiment,
the 1{s softwarc hadto respond quickly to any excessive forces detected during the operation. If the 1{S subsystemn
(lid not respond quickly to any anomalous conditions there was a distinet possibility of the failure of the robot.

The data based cor nnand structure of the systenr allows the systenn to execule a series of commands in
a supervised autonomous fashion. If any anomalous action is detected while execuling a series of conmmands, the
system reflex mode s initiated and the SYSUCoves info a defined safe 1hode of operation. D epend ent upon the task
progress this mode could vary from a simple halt of the robot, to a relaxation of forces followed by a halt operation,

2 Ada Softwarc Staffing P’rofile

The software designandimplementation of MOTES was complete with only two full t Imesoftware engineers assigned
to the task, sharing an oflice, working under one task manager. During one sunnner two graduale students were
assigned to the project

Except he author, none of the personnel working on this project had any Ada experience.® The author
was initially assigned with the task to teach Ada in one month short course. "The author continued with the project
serving ina role as both Ada consoltant and software engineer. Due i part to the small team size, and havi ng an
Ada consultant avail able, thelack of Ada expericnce was not a handicap during the project.

3 Rational for the Choice of Ada

The fundamental criteria for sclecting Adafor this project was hased on the view that all newly developed software
for any flight system for Space Station Ireedon would be done using the Ada programmiing language. 1t was decided
that arealistic test platform for a potential flight system should be completedusing Ada. R esults of the use of Ada
for this project could be used to decide if there were any clements of the Ada language that would hinder its use in

S0Olen Adams of JP1, provided insight into this portion of the problem.

TW. Yinnueran, P.Backes, R.Steele, M. Long, B. Bon, and 3. Beahan, Telerobot Local-Remote Control Avchitecture for Space Flight
Program Applications. Procecding AAS Guidance and Control Conference, February 1993

8Duc to a traflic accident, the one engincer with Ada experience was unavailable for the first year of the task,

2

3° RATIONAL FFOR T CHOICE 01" ADA

real time Tohot e gystens, The project then selected a ve ndor that could supply an Ada compiler that would meet
its requirciments,

Project requireimients were:

1. Only a minimum amou nt of the b udget for the project could be used to acquire both a target compiler and a
native compiler.

2. D evelopr nent would take place on s Sun 4 computer.
3, The target hardware would be Huerikon 68020°s.
4. 'The VME bus would be used as the backplane,

5. The robot to be controlled would be a 7 DO R RCIC 1207, The controlinterface was to be over a nil-3
interface module.

G. 11 was desirable, but not necessary, to build the software on top of the Windriver v Works Operating System. !

The bulk of these requircinents were levied in a desire to mintize the cost of developing the system. The
task had at its disposal Sun 4 and Suiy 3 workstations, approximately 12 Huerikon 68020°s, several VMUY chassis, an
adequate supply of support cards fora VME chassis, and an RRC'? 1207 robot and conitroller were avail able. By
using this equipment, new capital expenditures were minimized. O course, this reduced the choices for compilers
and otlier software tools.

Part. of the selection process included establishing the approximate cost of a developiment environiment and
an Ada compiler. The obtained estimates placed the acquisition of both a computer and compiler too expensive for
the project to absorb. Some of the Ada compilers evaluated were priced in range of $50,000 to $100,000. This price
range was completely out of scope for the size of the task. Many compilers were thus excluded from our evaluation
process based strietly on the cost of the products.

The pricing issues continues to discourage theuse of Ada. For exanmple, on one current task, the G NU13
C-l -l compiler was found to be suflicient for virtually no cost except a donation to the Open Software Foundation.

The final sclection based on these criteria was to use the Verdix Ada compiler as the cross compiler and the
Sun Ada compiler for as the native compiler. The native compiler was used 1o construet a simmulation of the final
systam. This simulation was an extremncly usefol aid in the jutegration phases. Debugging was simpler in the single
processor Sun based enviromnent than the mulitprocessor target cnvironment.

3.1 Benefits of the Ada Choice

A 11 dmplicit part of the rescarch nature of this project was to determine if Ada could be used 1o build a real-time
robotic control systern. At the beginning of theproject there was a great deal of uncertainty if t he current generat ion
of Ada compilers produced code that would prove eflicient for the app lication. The following were benefits of using

Ada.

1. Generie packages were used to provide the framework of the major underlying conmmuunication scheme.

“Degrees of Preedom

0 Robotics Rescarch Corporation

3P, Scetion 3147 has a long history and an internal knowledge base about this operating, system.
?Robotics Research Corporation, Columbus Ohio

¥ Not UNIX

4 DESIG N DECISIONS

2. The Adatasking model was used directly to deseribe the asy nchronous nature of the b roblem.
3. Theuscof overloaded operators simplified the code of the mathematical algorithms.

4. The potential portability problems were isolated within specilic Ada packages.

A's deseribed later in this article the generice features of the language were used when defining the basic
inter-processing cormmnunication within MOTES. The physical layout of shared memnory was controlled via facilities
of the Ada language to guarantee consistency of the use of memory b elween prog rams running on diflerent P rocessors.

4Dcsign Decisions

4.1 Mulliprocessor Decision

Because of the computational requiremnents and the computational linitations of the Hucrikon 68020°s', it was

derided early that thesystetn would be required Lo use multiple nuinbers of CPUcards, In the finial configuration,
7 Huerikon 68020°s were used to support the MOTES software,

Although the Ada language docs support multiprocessing and interprocessing communication it dots hot
reguive this support to be unified across programs exccuting on separate C'Us. This limitation forced us to design
0111 owninultiprocessor connunication.

4 . 2 Interprocessor Communication

T1 e mechanisin chosen to Implement the inter-processor conmmunication within MOTES was via shared memory.
Figure 4, MOTES Multi-Processor Data Flow, illustrates the relationship of the individual processes to the data
stored inshared mernory. 'The basic architecture of Shared Memory is thal of the hub or a ring with cach processor
read ing and writing data to arid from the hub as shown m Figure b, The shared memory interface is handled via
generic packages that export re ad and write procedures. These packages are collected and instantiated by a single
Ada package and it is within this package that ¢ he layont of Shared Manory is defined.

1 the currentimplementation both Last-In- First- Out (1,11'() queune structures and First-In- Fipst- Out (11170)
queuestruc tures are supported. Purtherthe 1,117 () structure supports both the single writer/multiple reader and the
multiple writ er/mmultiple reader cases. Tor the I'HFPO queue only single writer and single reader cases are supported.

Part. of the decision to use shared e nory was our concern for porting the systetn to different platforms.
So rather than depend upon dircet CPU to CPU 1 jcimory accesses it was fell access Lo ofl board mernory would be
supported on a variety of hardware platforms. One of the henefits of using, Ada was that the act ual implementation
det ails for the interprocessor communication would be hidden within the Ada package hodies. Additional structures
can be added to the current design with no nmpact to the systemn. So when porting the systan to a new platform,
the two generic packages for the LIFO structure and the FIFO structure may have to be modified for the change.
Thus no chanige in the interface to the application code is required.

1L e clock rate ot the processors used was 12.5 M1y

4 DI SIGN DECISIONS

4.3 Processor 1o Process Mapping

Ilach Ada task is napped to a separale vxWor ks process. Fo further aid this process we created a concept know
as a wrappcer program. For cach processor a wrapper program was created that contained all of the application
code required for this processor. 'This wrapper programn containis the shared nemory interface aud the required
Initialization for cach of the processors. Thus the application ¢ o d e that makes up the system may he wrapped
diflerently depending upon the number of processors required.

4.4 Simulator Philosophy

The construction of a simulator was very useful. To mimic a multiprocessor environment, each CPU was miapped to
an Ada task and this provided a slower but accurate niodel of the target systen.

This processing was 1ia p ped to a single CPU. In the target was mapped 1o an Ada task v the shimulation
chvironment. A wrapper program was constructed to provide a framework for the exccution of these Ada t asks. T'his
WIAPDCT was required by the rules of the language since an Ada task must be contaiued within an Ada compilation
unit. By introducing a thme scale coristant it was possible to provide an accurate model of the target system. This
simulation environuent was built and ran on a Sun 4 commputer.

The following is an example of the sinmilator code:

with ism; -- Procedur e to initial ize shared memo1 y

with Shared_ Memory _Variable; -- Location of shared memory variables
with xl; -- Encapsulation of the software that runs on Processor 1

with x2?; -- Encapsulation of the software that runs on Processor 2

procedure Simis
package SMV renames Shared_Memory_Variable;
Abort_Processor_x1 : Boolean renames SMV.Abort_ Processor_Array(1);
Abori_Processor_x2 : Boolean renames SMV.Abort_Processor_Array(2);
task Processor_1is
entry Start;
end Processor_1;
task Processor_2is
entry Start;
end Processor_2;
begin
-- Initializeshared memory.
ism;
-- Start the two task, each of which simulate one CPU
Processor-1 .Start;
Processor- 2.8tart;
-- Execute a delay statement, allowing the simulator to
-- runfor one hour of wall clock time.
loop
delay 3600.0;
end loop;
-- Abort the two tasks.
Abort_ Processor_x1 := True;
Abort_Processor_x2 := True;
end Sire

5 ADA REUSE SOURCES

4.5 MOTES Simulation Capabilily

Inchuded in the M OTES gystenn was a real-time giimtation capability. This capability gave the operator the ability
to accurale simulate a robotic application task. ‘I'his simulationmode used the full set of the MOTES software
exceept the actual Inter face from the device driver to manipulate the robot. This was accomplished by having the
devicedriver key o{1’ themnode of the systern.

Criticisins have been levied concerning this system on this point, The major criticisi!® was that the device
driver, considered a low leve 1 software Tunction, was required t o be aware of au high le vel operator function. Thie
rationale for inserting this feature at this low level was to provide the highest level of confidence inthe software that
would be controlling the robot. T'he particular robot used weighs in excess of 100 kilograms and is capalle of moving
al Joinl velocities incexcess of 1000 degrees per second. Thus even with the operator manning arohot. kill switches,
a software ot or could gen erate a command to t he rohot cont roll er that would result in breaking « he robot. So by
having the maximunn amount of control software cxccute as part of the simulation a high confidence level could be
placed when the comma nd s were executed with the actual robot in the control loop.

Given the nature of the problem the solution of putting a high function inside of the low level device driver
scein a reasonable engincering trade ofl. specially consider the robotic safety issues and the need to guarantee the
safe operation of the robot.

4.6 Interface Frrors Detectec by the Language

Because the Ada lauguage requires commplete specification of juterfacesmany design errors arccaughl before actual
debugging takes place. Other languages, sucly as C, do not provide intrinsic debugging aids as Ada dots, Without
these internal checks the project could not of heen completed within the schedule allocated.

5 Ada RecuscSources

At the beghming of the task one Of our goals was 1o reuse as nch Ada cod ¢ as possible. Unfortunately, there was
virt ually none that matched our chioice of data structures. For example, one need of any robotic system is a robust
fully debugged robotic nath library. Ducto the lack of auniformn choice of low level data structures in the Ada
robotic connnunity there areno s daredrol o1r mathlibrarics. The Lincar Algebra Package written by Allan Khuinpp
of JP1, was used as the basis o f the robot math library constructed by Mark Long for the task. The resources
available at Mountain Net ‘s Ada Repository were used to obtaina few soft ware tools.

Because much of the robotics work is done using C it has been difficult to port the MOTES soltware to
olher projects. Again, because their is not a consistent choice in represen tat ions of data structures is has proved to
diflicult to share anything more substantial than numerical algorithins.

6 Codce Siructure

The major data types and math function were encapsulated within a few Ada packages that allthe software in the
systenrused. This provided at least onebottlencck during the software development cycle. 0111 compilers were
runuing 011 aSun 4 using arclatively slow disk drive. Complete compilationis of the system would take inexcess of
A5 minutes. In the 2nd y e ar of the developinent process we acquired a faster disk drive and upgrades to the Ada

5 David Lim, formerly of 11’1 brought this criticism to my attention

6

7 REAL-TIMEDEBUG GING

compiler. Between these two events the compilation time of the complete systen 1 was reduced 1o approximately 15
innutes. Fortun ately, the packages that drove these complete compilations were modified infrequently.

Phis long cyce for a system comnpilation was frequent 011 systeins 10 years ago, butsoftware engineers have
become accustomed to very quick turn aronnd time, The best solution from botl v an engineering perspective and a
management view is Lo use the latest developtnent engines to reduce this turn around tirne.

7 Real-Time Dcebugging

The classic debugging techniques do not often apply to debugging real-time software. One is often miore interested
nilooking at {rends of values thanwithaparticular value. For this project we Used a software oscilloscope p rogr amn.
This provided a meanis to Plot yu)pee With respect to titne as they were changing. The produ et StethoScope w as
chosen for use on this project.

As a side nole, this product was only provided with a Cinterface. Cor nplete Ada bindings were written in
amalter of two weck s by one of the graduate students. T'he case of being able to use third party software written
i a different language continues to bhe one of Ada’s strenglhs,

8 Internet Conncctivity

When the author started working on this task, he ha d no experience with the VME bus, Huerikon boards, or the
Windriver vxWorks Operating System. By siniple doing a little reading on the Internet bulletin boards 1 was able
to obtain a wealth of information and to build a conisiderable knowledge hase in very short period. Without this
resource, problems 1 encountered would have taken many thnes longer to solve.

9 Summary of l.essons Learned

o ‘The cost of Ada compilers continue to limit production envirommnents.
¢ lasc of access 1o Internet e-mail services aids resolution of problems with vendors.

e Fasce of access Lo the Internet readriews bulletin board incrcases the offeetive knowledge base for resolving
problems.

¢ Not using soltware written in other languages increases development and debug time,
o lLack of Ada experienced engineers is not critical to completing a project on schedule,

o lNaving at Jeast one Ada experienced engineer 1o act as a mentor s huportan t when working with engincers
mexperienced in Ada.

o Third party software to dynamically debug the system. Software such as StethoScope proved invaluable,

e Workstations with suflicient capabilities to provide minimal compilation thne.

10 ACKNOWLE DG MENTS

10 A cknowledgments

The rescarch deseribed in this paper was carried out by the Jel Propulsion Laboratory, Califor nia Institute of
I'echnology, under a contract with the National Aeronauti es and Space Admninistration.

